注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

幸福满屋

 
 
 

日志

 
 

【引用】教不越位,学不定格    

2011-06-06 21:07:16|  分类: 课改资料 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
本文转载自碧水蓝天《教不越位,学不定格  》
  【摘 要】课堂上“教”必须致力于“导”,服务于‘学”。教师应在引趣、设问、点拨等环节上下功夫,教不越位,学要到位;学生是学习、发展的主体,一切教育教学活动只有转化为学生积极主动参与,让学生自己“动”起来,才是课堂教学的根本需要。
  关键词:课堂学习 主动发展 教师引领
  
  现代教学观认为,教学是指学生在教师的科学指导下,主动参与,主动获取,自主构建,自我发展,自我完善。充分调动学生的自觉学习、主动学习、学会学习的积极性,培养学生主动学习、学会学习的意识、习惯、能力和方法,实现课堂学习自主,是现代课堂教学改革的必然趋势,是素质教育活的灵魂。
  一、教不越位,是实现课堂学习自主的关键
  课堂上“教”必须致力于“导”,服务于“学”。教不越位,是实现课堂学习自主的关键。怎样才能体现教师的引导既到位、又不越位呢?我认为,教师应在引趣、设问、点拨等环节上下功夫,在“精”字上做文章。
  l.精引。课堂引趣,一是要“精”,要根据所学内容,或创设一个引人入胜的情境,或布迷设障等,但不能冗长。二是要“妙”,开课引题,要具有延伸性。例如,“圆的认识”一课,教师首先利用生动的电视画面。轻快的音乐把儿童带进这样的故事场面:唐老鸭要逛公园,先坐正方形轮子的小车,小车动不了。接着改乘椭圆形轮子的小车,车开动了,但唐老鸭忽上忽下,惊魂不定。最后,他登上圆形轮子的小车,小车滚滚向前,唐老鸭舒心惬意。这时,教师用亲切的语言,启发大家:“圆形与过去学过的正方形、三角形有什么不同?圆形轮子的小车开起来为什么平平稳稳?”这样导入新课,既能激发兴趣,又能创设悬念,使学生自然产生主动求知的心理冲动,从而带着良好的状态进入学习。
  2.精问。学贵有思,思贵有疑。思维自惊奇和疑问开始,学生有了问题才会去探索,只有主动探索才会有创造。因此,课堂教学中,教师要精心设计几道有思维价值、能引发学生深入思考的问题,同时提供与之相匹配的学习材料,让学生自学、自探,然后得出结论。教师重在授法,学习贵在领悟,学法渗透于教法之中。例如,“长方形面积的计算”一课,开始,教师首先提出问题;“长方形的面积与它的什么有关系?”开门见山,直奔主题。在学生出现种种猜测后,借助多媒体电脑动画演示,使学生直观感知:长方形的宽不变,长越长,面积越大;长方形的长不变,宽越长,面积也越大。从而得出结论:长方形的面积与它的长和宽有关系。“长方形的面积与它的长和宽究竟有怎样的关系呢?”第二个问题提出后,马上放手,引导学生用边长是1厘米的小正方形摆各种不同的长方形,并把所摆长方形的长、宽、面积记录到表格中。在大量具体数据展现在学生面前,并让学生充分表述自己摆长方形的过程之后,教师提出第三个问题“观察表格,回想自己摆长方形的过程,你们发现了什么?”组织讨论。有的学生借助具体数据,很快得出了“长方形面积=长×宽”的结论以上教学,教师通过精心设问,逐步把学生的思维引向深入,学生开展了积极的智慧活动,不仅学到了知识,而且数学思维能力得到了切实地培养。
  3.精拨。学生在认知活动中,出现思维障碍而无法排除时,教师要充分运用引导、点拨这一教学手段来激活学生的思维,使之达到自主参与、自觉发现、自我完善、自行掌握知识的目的。教学中点拨一是要“准”,要在学生思维的堵塞处,拐弯处予以指导、疏理;二是要“巧”,在学有困难学生茫然不知所措时,在中等生“跳起来摘果子”力度不够时,在优等生渴求能创造性地发挥其聪明才智时予以点拨,使其茅塞顿开。例如,“能化成有限小数的分数特征”一课,通过师生打擂台,激发起学生的参与兴趣后,师问;“有的分数能化成有限小数,有的分数不能化成有限小数,这里面蕴含着一个规律,这个规律是在分子中呢,还是在分母中?”当学生观察到1/4和1/3分子相同,而1/4能化成有限小数,1/3却不能时,一致认为规律在分母中。这时,师又问:“能化成有限小数的分数的分母有什么特征呢?”组织学生讨论:有的说分母是奇数,但1/9却不能化成有限小数,有的说分母是偶数,但1/5也能化成有限小数……当学生屡屡碰壁,思维出现“中断“偏离”时,教师不再让学生漫无目的地争论,而是适时地点拨指导,启发学生:“你们试着把分数的分母分解质因数,看能不能发现规律?”一句话,使学生一下便找到了思维的突破口,发现了特征:“一个分数,如果分母中除了2和5以外不含有其他质因数,这个分数就能化成有限小数”。课堂上教师适时适度的点拨,能促使学生更好地理解、掌握数学知识,实现自主学习。
  二、学不定格,是实现课堂学习自主的根本
  在课堂教学中,教师要努力发展学生的主动性,要让学生自己“动”起来,使他们的所有感官(眼、耳、口脑、手)都充分发挥作用,形成一个“全频道接收、多功能协调、立体化渗透、快节奏反馈”的信息网络,使学习的各个环节都得到优化,训练处处到位。学不定格,是实现课堂学习自主的根本。
  1.“看”“做”结合,培养了学生的观察能力。科学家的研究表明;“人们获取信息有60~80%来自于视觉,只有15%~20%来自于听觉。”数学观察力强的人,善于发现图形的特点、数量关系的特征和数学知识问的内在联系,从而进行正确恰当的判断。合乎逻辑的推理和准确迅速的运算。因此,数学学习必须重视数学观察力的培养。观察一要明确的目的,二要按一定的顺序,三要与思维和想象相结合,善于比较,从而提高观察的效果。数学是思维的体操,而思维是由动作开始的。切断了动作和思维的联系,思维就不能得到发展。因此,教学中教师要根据教学内容和学生的认知规律,积极创造条件,让学生操作学具,促使其顺利到达认知的彼岸。
  2.“听”“说”结合,培养了学生的思维能力。听”与“说”是交流的主要形式。教育心理学研究表明:学生课堂上获得的知识和技能,80%以上是靠“听”与“说”摄取的。学生通过听,既对教师传授的知识进行吸收和理解,又对同学发表的意见进行评判和认识。学生通过说,一方面把自己对知识的领悟情况反馈给教师、为教师随机调整教学提供依据,以提高教学实效;另一方面,学生在“说”中互相交流,共同加深了对知识的理解。由此可见,数学课堂教学中,一定要重视学生的“听”与“说”,把对学生的“听”“说”训练放到应有的位置上来,这是小学数学教学本身的需要。
  3.“想”“练”结合,培养了学生的数学能力。数学教学的核心是发展思维。优化思维,确保学生的思维到位,必须以“数学活动”贯穿教学的始终,让全体学生参与知识发生、发
  展的全过程;练习是课堂教学的重要组成部分,是教学过程中学生实践的主要形式,也是学生学好数学的一个重要环节。心理学研究表明;知识、技能、能力存在着如下的转化关系:知识→技能→能力。要使学生所学的数学知识转化为技能,并使技能化为技巧,必须充分发挥练习这个环节的作用。
  例如,设计“开放题”:在括号内填上适当的数:6/7>()/7有的学生填了1;有些学生说可填1、2、3;有些学生说可填l~5的任何数。题目都做对了,但反映出学习水平是不一样的,也说明了这类练习满足了不同学习水平学生的学习需求。这类练习的答案不是唯一的。又如,学习了分数除法的计算规则以后,教师出示:从下面的三个数中选择一个数作除数,再计算:5÷(5/8,12,0.25)有些学生选择手,用即时学习的方法计算:5÷5/8=5×8/5=8;也有的学生选择12,看作1/12,用分数除法计算规则计算:5÷12=5×1/12=5/12;还有的学生选择了0.25,先化成分数再计算:5÷0.25=5÷1/4=5×4=20。最后,教师请大家交流、相互启发,全体学生都受益。
  总之,教不越位,学不定格,是对教和学辩证关系的生动概括,是深化课堂教学改革,切实推行素质教育,全面提高教育教学质量的重要保证。
  评论这张
 
阅读(28)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017